Syringe Pump Pressure Calculation Formula
Syringe Pressure is the amount of force applied by the pusher block on the syringe plunger to the surface area of the liquid inside the syringe. To calculate syringe pump pressure, the pump linear force is divided by the area of the inside of the syringe based on the simplified formula below:
\[Pressure \frac{lbf}{in^2} = \frac{F \times 4}{π \times d^2}\]π = 3.1416
d = Syringe Diameter
F = Pump Linear Force
Note: If more than one syringe is being used, then the pump’s linear force will need to be divided by the number of syringes used on the pump.
Before calculating syringe pump pressure, we need to know the Syringe Pump Linear Force.
Depending on the syringe pump you are using, each pusher block generates a different amount of force.
Below is a list of Chemyx syringe pumps with their max linear forces.
- Fusion 100 – 35 lbf
- Fusion 100 -X – 55 lbf
- Fusion 200 – 50 lbf
- Fusion 200 -X – 65 lbf
- Fusion 4000 – 75 lbf
- Fusion 4000-X – 95 lbf
- Fusion 6000 – 500 lbf
- Fusion 6000-X – 700 lbf
Below are some examples of how to calculate pump pressure for different Chemyx syringe pumps.
Chemyx Syringe Pump Model – Fusion 100
\[Pressure \frac{lbf}{in^2} = \frac{\frac{35lbf}{No. of syringes} \times 4}{π \times d^2}\]For Example:
- 2 mL syringe
- 0.40 inch diameter
- 1 syringe on pump
Chemyx Syringe Pump Model – Fusion 100 – X
\[Pressure \frac{lbf}{in^2} = \frac{\frac{55lbf}{No. of syringes} \times 4}{π \times d^2}\]For Example:
- 2 mL syringe
- 0.40 inch diameter
- 1 syringe on pump
Chemyx Syringe Pump Model – Fusion 200
\[Pressure \frac{lbf}{in^2} = \frac{\frac{50lbf}{No. of syringes} \times 4}{π \times d^2}\]For Example:
- 2 mL syringe
- 0.40 inch diameter
- 1 syringe on pump
Chemyx Syringe Pump Model – Fusion 200-X
\[Pressure \frac{lbf}{in^2} = \frac{\frac{65lbf}{No. of syringes} \times 4}{π \times d^2}\]For Example:
- 2 mL syringe
- 0.40 inch diameter
- 1 syringe on pump
Chemyx Syringe Pump Model – Fusion 200 with 10-Channel Syringe Holder Rack
\[Pressure \frac{lbf}{in^2} = \frac{\frac{50(lbf)}{No. of syringes} \times 4}{π \times d^2}\]For Example:
- 2 mL syringe
- 0.40 inch diameter
- 10 syringe on pump with modular rack
Chemyx Syringe Pump Model – Fusion 4000
Fusion 4000 has two independent syringe holders. The motor of each syringe holder provide 75 lb of force .
\[Pressure \frac{lbf}{in^2} = \frac{{75lbf} \times 4}{π \times d^2}\]For Example:
- 2 mL syringe
- 0.40 inch diameter
- 2 syringe on pump
Chemyx Syringe Pump Model – Fusion 4000-X
Please note that the Fusion 4000-X is capable of holding 2 Independent pump channel racks (additional accessory). This allows a capacity of four syringes to be used at one time. In the case that the two-channel rack is used please divide the 95lbs max pressure by half.
Fusion 4000-X has two independent syringe holders. The motor of each syringe holder provide 95 lb of force .
\[Pressure \frac{lbf}{in^2} = \frac{{95lbf} \times 4}{π \times d^2}\]For Example:
- 2 mL syringe
- 0.40 inch diameter
- 2 syringe on pump
Chemyx Syringe Pump Model – Fusion 6000
\[Pressure \frac{lbf}{in^2} = \frac{{500lbf} \times 4}{π \times d^2}\]For Example:
- 100 mL syringe
- 1.37 inch diameter
Chemyx Syringe Pump Model – Fusion 6000 with 4-Channel Metal Syringe Holder Rack
\[Pressure \frac{lbf}{in^2} = \frac{\frac{500lbf}{No. of syringes} \times 4}{π \times d^2}\]For Example:
- 100 mL syringe
- 1.37 inch diameter
- 4 syringe on pump
Chemyx Syringe Pump Model – Fusion 6000-X
\[Pressure \frac{lbf}{in^2} = \frac{{700lbf} \times 4}{π \times d^2}\]For Example:
- 100 mL syringe
- 1.37 inch diameter